Generative Benchmark Models for Mesoscale Structures in Multilayer Networks

نویسندگان

  • Marya Bazzi
  • Lucas G. S. Jeub
  • Alexandre Arenas
  • Sam D. Howison
  • Mason A. Porter
چکیده

Marya Bazzi, ∗ Lucas G. S. Jeub, 2, ∗ Alex Arenas, Sam D. Howison, 4 and Mason A. Porter 5, 6 Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom Center for Complex Networks and Systems Research, School of Informatics and Computing, Indiana University, Bloomington, Indiana 47408, USA Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain Oxford-Man Institute of Quantitative Finance, University of Oxford, Oxford OX2 6ED, United Kingdom CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP, United Kingdom Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095, USA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relating modularity maximization and stochastic block models in multilayer networks

Characterizing large-scale organization in networks, including multilayer networks, is one of the most prominent topics in network science and is important for many applications. One type of mesoscale feature is community structure, in which sets of nodes are densely connected internally but sparsely connected to other dense sets of nodes. Two of the most popular approaches for community detect...

متن کامل

Density-Based and Transport-Based Core-Periphery Structures in Networks

Networks often possess mesoscale structures, and studying them can yield insights into both structure and function. It is most common to study community structure, but numerous other types of mesoscale structures also exist. In this paper, we examine core-periphery structures based on both density and transport. In such structures, core network components are well-connected both among themselve...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

Generative Moment Matching Networks

We consider the problem of learning deep generative models from data. We formulate a method that generates an independent sample via a single feedforward pass through a multilayer preceptron, as in the recently proposed generative adversarial networks (Goodfellow et al., 2014). Training a generative adversarial network, however, requires careful optimization of a difficult minimax program. Inst...

متن کامل

Generative Adversarial Networks

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1608.06196  شماره 

صفحات  -

تاریخ انتشار 2016